Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Recently classified as a unique species by the IUCN, African forest elephants (Loxodonta cyclotis) are critically endangered due to severe poaching. With limited knowledge about their ecological role due to the dense tropical forests they inhabit in central Africa, it is unclear how the Afrotropics are influenced by elephants. Although their role as seed dispersers is well known, they may also drive large‐scale processes that determine forest structure through the creation of elephant trails and browsing the understory, allowing larger, carbon‐dense trees to succeed. Multiple scales of lidar were collected by NASA in Lopé National Park, Gabon from 2015 to 2022. Utilizing two airborne lidar datasets in an African forest elephant stronghold, detailed canopy structural information was used in conjunction with elephant trail data to determine how forest structure varies on and off trails. Forest along elephant trails displayed different structural characteristics than forested areas off trails, with lower canopy height, canopy cover, and different vertical distribution of plant density. Less plant area density was found on trails at 1 m in height, while more vegetation was found at 12 m, compared to off trail locations. Trails in forest areas with previous logging history had lower plant area in the top of the canopy. Forest elephants can be considered as “logging light” ecosystem engineers, affecting canopy structure through browsing and movement. Both airborne lidar scales were able to capture elephant impact along trails, with the high‐resolution discrete return lidar performing higher than waveform lidar.more » « less
-
Understanding the distribution and extent of suitable habitats is critical for the conservation of endangered and endemic taxa. Such knowledge is limited for many Central African species, including the rare and globally threatened Grey-necked Picathartes Picathartes oreas, one of only two species in the family Picathartidae endemic to the forests of Central Africa. Despite growing concerns about land-use change resulting in fragmentation and loss of forest cover in the region, neither the extent of suitable habitat nor the potential species’ distribution is well known. We combine 339 (new and historical) occurrence records of Grey-necked Picathartes with environmental variables to model the potential global distribution. We used a Maximum Entropy modelling approach that accounted for sampling bias. Our model suggests that Grey-necked Picathartes distribution is strongly associated with steeper slopes and high levels of forest cover, while bioclimatic, vegetation health, and habitat condition variables were all excluded from the final model. We predicted 17,327 km2 of suitable habitat for the species, of which only 2,490 km2 (14.4%) are within protected areas where conservation designations are strictly enforced. These findings show a smaller global distribution of predicted suitable habitat for the Grey-necked Picathartes than previously thought. This work provides evidence to inform a revision of the International Union for Conservation of Nature (IUCN) Red List status, and may warrant upgrading the status of the species from “Near Threatened” to “Vulnerable”.more » « less
-
Abstract Fine roots constitute a significant component of the net primary productivity (NPP) of forest ecosystems but are much less studied than aboveground NPP. Comparisons across sites and regions are also hampered by inconsistent methodologies, especially in tropical areas. Here, we present a novel dataset of fine root biomass, productivity, residence time, and allocation in tropical old‐growth rainforest sites worldwide, measured using consistent methods, and examine how these variables are related to consistently determined soil and climatic characteristics. Our pantropical dataset spans intensive monitoring plots in lowland (wet, semi‐deciduous, and deciduous) and montane tropical forests in South America, Africa, and Southeast Asia (n = 47). Large spatial variation in fine root dynamics was observed across montane and lowland forest types. In lowland forests, we found a strong positive linear relationship between fine root productivity and sand content, this relationship was even stronger when we considered the fractional allocation of total NPP to fine roots, demonstrating that understanding allocation adds explanatory power to understanding fine root productivity and total NPP. Fine root residence time was a function of multiple factors: soil sand content, soil pH, and maximum water deficit, with longest residence times in acidic, sandy, and water‐stressed soils. In tropical montane forests, on the other hand, a different set of relationships prevailed, highlighting the very different nature of montane and lowland forest biomes. Root productivity was a strong positive linear function of mean annual temperature, root residence time was a strong positive function of soil nitrogen content in montane forests, and lastly decreasing soil P content increased allocation of productivity to fine roots. In contrast to the lowlands, environmental conditions were a better predictor for fine root productivity than for fractional allocation of total NPP to fine roots, suggesting that root productivity is a particularly strong driver of NPP allocation in tropical mountain regions.more » « less
-
Abstract Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long‐lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time‐series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population‐level time‐series from 974 species in 66 countries. The mean and median time‐series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≥20 years of observations). For a subset of well‐studied species, MASTREE+ includes extensive replication of time‐series across geographical and climatic gradients. Here we describe the open‐access data set, available as a.csv file, and we introduce an associated web‐based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long‐lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics.more » « less
An official website of the United States government
